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Humans have a remarkable capacity to remember pictures in 
episodic long-term memory, even after only a single exposure 
to the original image (Shepard, 1967; Standing, 1973; Stand-
ing, Conezio, & Haber, 1970). In one seminal study, Standing 
(1973) presented observers with 10,000 images, and they per-
formed with more than 80% accuracy in a subsequent recogni-
tion memory task. However, because previous studies have 
used conceptually distinctive images, high performance may 
have been achieved with sparse representations of the images, 
in which only basic-level category information was stored 
(Chun, 2003; Simons & Levin, 1997; Wolfe, 1998; although 
see Standing et al., 1970). Thus, although these landmark stud-
ies demonstrate that observers can remember thousands of pic-
tures, open questions remain about the fidelity of the stored 
scene representations and the infrastructure that supports them.

Recently, large-scale memory studies have demonstrated 
that observers can retain relatively detailed representations of 
individual objects. Hundreds to thousands of object represen-
tations can be maintained in visual long-term memory with 
enough fidelity to enable people to succeed at exemplar-level 
and even state-level discriminations, whether the objects are 
presented in isolation or embedded in scenes (Brady, Konkle, 
Alvarez, & Oliva, 2008; Hollingworth, 2004; Konkle, Brady, 
Alvarez, & Oliva, 2010). For example, we had observers view 

2,800 object images, with 1 to 16 exemplars from each basic-
level category (Konkle et al., 2010). Afterward, observers 
were presented with 2 exemplars from the same object cate-
gory and indicated which one they had seen previously. Mem-
ory performance was high when a single exemplar was studied 
(89%), and there was only a 2% decrease in performance with 
each doubling of the number of exemplars studied within a 
category. Given these results with isolated object images, what 
level of performance might be expected from observers when 
they are presented with more complex images of real-world 
scenes and an increased number of scene exemplars?

Intuition suggests that long-term memory representations 
might be less detailed for individual scenes than for single 
objects. Scenes may contain more information than individual 
objects do (Marr, 1982) because scenes contain multiple 
objects that are shared between exemplars of various scene 
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Abstract

Observers can store thousands of object images in visual long-term memory with high fidelity, but the fidelity of scene 
representations in long-term memory is not known. Here, we probed scene-representation fidelity by varying the number of 
studied exemplars in different scene categories and testing memory using exemplar-level foils. Observers viewed thousands 
of scenes over 5.5 hr and then completed a series of forced-choice tests. Memory performance was high, even with up to 
64 scenes from the same category in memory. Moreover, there was only a 2% decrease in accuracy for each doubling of the 
number of studied scene exemplars. Surprisingly, this degree of categorical interference was similar to the degree previously 
demonstrated for object memory. Thus, although scenes have often been defined as a superset of objects, our results suggest 
that scenes and objects may be entities at a similar level of abstraction in visual long-term memory.
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categories. Consider the golf courses or ocean waves in Figure 1, 
for instance; all of the scene exemplars within each of these 
categories are conceptually similar and contain the same 
objects, regions, and color scheme. This similarity could lead 
to a high degree of interference in visual long-term memory: 
In others words, recognition performance might decline rap-
idly as more scene exemplars are studied.

Alternatively, holistic theories of scene representation 
(Greene & Oliva, 2009b; Oliva & Torralba, 2001) have shown 
that scenes do not need to be represented as a collection of 
parts: Global properties are sufficient to enable recognition. 
Furthermore, scenes have category structure just as objects do 
(Tversky & Hemenway, 1983), and such conceptual informa-
tion has been shown to support memory for details (Konkle  
et al., 2010; Koutstaal et al., 2003; Wiseman & Neisser, 1974). 
For example, basic-level category schemas may allow for effi-
cient encoding of scenes through either compressive or 
expanded encoding (Brady, Konkle, & Alvarez, 2009; Schyns, 
Goldstone, & Thibaut, 1998), or by guiding attention toward 
distinctive details (Eysenck, 1979; Nosofsky, 1986; Vogt & 
Magnussen, 2007). Holistic processing of scenes might there-
fore result in high-fidelity memory representations, leading to 
only minor interference as the number of studied exemplars 
increases.

To examine the fidelity of scene representation in visual 
long-term memory, we conducted a large-scale memory 
experiment in which observers studied thousands of scene 
images. We varied the number of exemplars presented per 
scene category and tested memory using exemplar-level foils.

Method
Participants
Twenty-four adults (age range = 20–35 years) gave informed 
consent and received compensation for their participation.

Stimuli
The stimuli were 4,672 images from 160 different scene cate-
gories gathered using Google Image Search. Stimuli can be 
downloaded at http://cvcl.mit.edu/MM.

Procedure
The experiment consisted of a study phase and a testing phase, 
both conducted on a computer. During the study phase, observ-
ers viewed thousands of scenes and also performed a repeat 
detection task that encouraged sustained attention. The study 
phase was divided into 10 blocks of 20 min each. After a 20-min 
break, observers completed the testing phase, in which a series 
of two-alternative, forced-choice test trials was presented. 
Observers had to discriminate the images they had seen in the 
study phase from foil images that could either be from a novel 
scene category or be an exemplar from the same scene category. 
Before the experiment began, observers were informed about 
what kinds of test to expect during the testing phase.

Study phase. In the study phase, observers viewed 2,912 
images from 128 different scene categories, with 1, 4, 16, or 

Fig. 1.  Four example scene categories (ocean wave, classroom, golf course, amusement park) from the set of 160 categories used in the experiment.
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64 exemplars presented per category. All items that would 
later be tested were distributed uniformly throughout the 
stream. Images were presented one at a time (subtending  
7.5° × 7.5° visual angle) for 3 s each, alternated with a fixation 
cross (800 ms; see Fig. 2a).

For the repeat detection task, observers were told to press 
the space bar any time an image repeated, and they were not 
informed of the structure or frequency of the repeat condi-
tions. Feedback was given only when participants responded, 
with the fixation cross turning red if they incorrectly pressed 
the space bar (false alarm) or green if they correctly detected a 
repeat (hit). Repeated images were distributed uniformly 
throughout the study stream and were set to recur after 1, 15, 
63, 255, or 1,023 intervening items. These images came from 
48 scene categories, in which either 4, 16, or 64 exemplars 
were presented and 4 exemplars per category were repeated 
(there were 192 repeats total). Thus, in the study stream, 
repeats occurred approximately every 1 in 14 items. None of 
the scene categories with repeated items in the study stream 
were used in the testing phase.

Testing phase. The testing phase consisted of 224 two-
alternative, forced choice trials. Participants proceeded at their 
own pace and were told to emphasize accuracy, not speed, in 
making their judgments. On each trial, participants were pre-
sented with two items—one previously studied (old) item and 
one new foil item—and they indicated which item they had 
seen before (see Fig. 2b). In the exemplar-test conditions, the 
foil and the studied items were from the same scene category. 
For all exemplar tests, we varied how many other scene 

exemplars from that category had been viewed in the study 
phase: 4, 16, or 64 other scene exemplars. Sixteen scene cate-
gories were used for each of these studied-exemplar condi-
tions, with 4 tested images per category, yielding 64 trials per 
condition.

We also included a novel test condition, in which the stud-
ied item and foil item were from different scene categories. In 
these 32 test trials, the studied item was always a singleton 
exemplar from the study stream, and the foil item was always 
a singleton exemplar from a novel scene category.

Critically, all of the two-alternative, forced-choice test tri-
als were the same for all subjects; in these trials, we counter-
balanced (a) which one of the two items was studied and which 
was the foil and (b) how many exemplars each participant 
studied from a particular category. This complete counterbal-
ancing ensured that any changes in memory performance 
across conditions could be attributed to a pure impact of addi-
tional studied exemplars, and could not be driven by differ-
ences in difficulty across scene categories or across specific 
test-foil comparisons.

Results and Discussion
Forced-choice memory performance

Performance in the forced-choice memory task is plotted in 
Figure 2c. When the foil was a scene from a novel category, 
observers correctly identified 96% (SEM = 1%) of the studied 
images. Thus, even with approximately 3,000 scenes in mem-
ory, observers could distinguish which item they had studied, 
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Fig. 2.  Experimental procedure and results. During the study phase (a), observers were presented with 2,912 scenes for 3 s each, with a variable number 
of exemplars presented from each scene category. Each image was followed by a fixation cross (800 ms). During the testing phase (b), memory was tested 
with two-alternative, forced-choice tests. In the novel condition, one studied scene was presented alongside a new scene from a novel category. In the 
exemplar conditions, a studied scene was presented alongside a new exemplar from the same scene category. Performance on the recognition memory 
task was quantified as percentage correct (mean hit rate) and is plotted (c) for the novel condition and for the exemplar conditions, in which the number 
of studied exemplars was 4, 16, or 64. Chance performance is indicated by the dashed line. Error bars represent ±1 SEM.
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with performance near ceiling. This finding is compatible with 
previous results demonstrating a massive visual long-term 
memory capacity for scenes when the foils are categorically 
distinct (e.g., Standing, 1973).

We next examined memory performance with exemplar-
level foils. There was a significant drop in performance when 
memory for a scene was tested against a foil from a different 
category, compared with when it was tested against a foil from 
the same category, t(23) = 10.0, p < .001 (see also Brady et al., 
2008). Further, increasing the number of studied exemplars 
from 4 to 64 reliably reduced performance from 84% to 76%, 
F(2, 46) = 14.7, p < .001, η2 = .39. However, each doubling of 
the number of studied exemplars decreased forced-choice per-
formance by only 1.8% (SEM = 0.3%). This result demon-
strates that the information retained when observers remember 
a particular image is sufficient to distinguish that image from 
many other exemplars of the same category in memory. This 
suggests that a significant amount of detail in addition to the 
category is stored.

Repeat detection performance
Repeat detection performance was high, with hit rates at 96% 
with 1 intervening item (SEM = 2%), 91% with 15 intervening 
items (SEM = 2%), 80% with 63 intervening items (SEM = 
3%), 74% with 255 intervening items (SEM = 3%), and 56% 
with 1,023 intervening items (SEM = 4%). The false alarm rate 
was near floor at 3% (SEM = 0.4%). Repeat detection sensitiv-
ity decreased systematically with an increase in intervening 
items, F(4, 92) = 104.1, p < .001, η2 = .82 (Fig. 3b).

Comparison Between Objects and Scenes

The results demonstrate that memory representations of scenes 
are of relatively high fidelity, as observers are capable of dis-
tinguishing between scene exemplars with only a modest 
impairment in performance as the number of studied exem-
plars increases. A similar large-scale memory study with 
object exemplars (Konkle et al., 2010) provides an opportu-
nity to compare the impact that the number of studied exem-
plars has on remembering visual stimuli of different 
complexity. It is important to note that the two studies used a 
similar procedure to select images from the basic-level catego-
ries: Images spanned the category, and the target the target and 
the foil were randomly selected from the images within a cat-
egory, such that natural variability between exemplars within 
a category determined the relationship between the tested 
image and the foil image. If categories are an important struc-
ture supporting visual long-term memory, similar results might 
be expected for objects and scenes, despite the obvious differ-
ences between these two stimulus types (e.g., scenes contain 
many objects).

The comparison between the object and scene memory 
studies is shown in Figure 3 (also see the Supplemental Mate-
rial available online). Although performance in the novel foil 
condition was significantly higher for scenes than for objects 
(scenes: 96%; objects: 93%), t(40) = 2.07, p < .05, the slope of 
interference by number of exemplars is strikingly similar for 
the two stimulus types. In both cases, the impact of the number 
of studied exemplars on memory performance was well fit by 
a linear relationship between memory performance and the 
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Fig. 3.  Comparison of categorical interference in visual long-term memory for scenes (experiment reported here) and for objects (data from Konkle, 
Brady, Alvarez, & Oliva, 2010). Percentage correct (mean hit rate) in the two-alternative, forced-choice memory tasks of both experiments is plotted in 
(a). In the novel condition, the foil item was from a different basic-level category. In the exemplar conditions, the foil item was from the same basic-level 
category from which a variable number of exemplars had been viewed in the study stream. Repeat detection performance during the study phase is 
shown for both experiments in (b). Performance was quantified using d′, which takes into account hits, corrected for false alarms, and is plotted as a 
function of the number of intervening items between initial and repeat presentation. Regression lines are shown. Error bars represent ±1 SEM.
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log2 number of studied exemplars. There was no reliable dif-
ference between the slope or the intercepts between these two 
studies—slope: t(40) = 0.4, p = .71; intercept: t(40) = 0.8, p = 
.40 (Fig. 3a). For scenes, the average slope of memory perfor-
mance was –1.8% (SEM = 0.3%), with an intercept of 87% 
(SEM = 1.8%). For objects, the slope of memory performance 
was –2.0% (SEM = 0.4%), with an intercept of 89.2% (SEM = 
1.8%). Performance in the repeat detection task was also  
very similar across object and scene stimuli (Fig. 3b)—slope: 
t(40) = 1.7, p = .09; intercept: t(40) = 1.1, p = .26.

General Discussion
We examined the fidelity of memory for scene exemplars in a 
large-scale memory experiment by using exemplar-level tests 
and varying the number of exemplars per category. We found 
that observers presented with two exemplars were able to suc-
cessfully choose which one they had previously studied, even 
after encoding thousands of scene images and up to 64 exem-
plars from that category. Although it has typically been 
assumed that in previous large-scale memory experiments the 
stored scene representations were sparse (e.g., Chun, 2003; 
Simons & Levin, 1997; Wolfe, 1998), the current data demon-
strate that memory representations for scenes can contain sig-
nificant detail beyond the scenes’ basic-level category (see 
also Standing et al., 1970).

Additionally, we observed that memory performance 
showed a minor but systematic decline as more exemplars 
were studied from a scene category. This degree of interfer-
ence from scene exemplars was remarkably similar to the 
interference caused by additional object exemplars—approxi-
mately a 2% decline in memory performance with each dou-
bling of the number of studied exemplars. Moreover, the 
repeat detection results show that the impact of intervening 
items (or elapsed time) is similar for scenes and objects, and 
this further supports the generality of long-term memory pro-
cesses across different kinds of visual content.

Although the minimal impact of exemplars may suggest 
that semantic structure is largely irrelevant, previous work has 
shown that abstract images that do not relate to preexisting 
knowledge are remembered very poorly (Koutstaal et al., 
2003; Wiseman & Neisser, 1974). Furthermore, in this study, 
we observed an 8% impairment in performance by adding 60 
additional exemplars within the same category to the study 
stream. By contrast, in the work of Standing (1973), an 8% 
drop in performance resulted from the addition of nearly 7,500 
categorically distinct items. Thus, visual categories may actu-
ally provide the conceptual scaffolding for supporting detailed 
visual long-term memory for scenes, just as they do for objects 
(Konkle et al., 2010).

The fidelity of memory for scenes
Although recognition memory was high, these results do not 
imply that visual long-term memory retains a photographic 

representation of scenes. Rather, our results suggest that mem-
ory representations contain the kind of details that would be 
most likely to distinguish between meaningful exemplar-level 
changes (e.g., your bedroom compared with someone else’s 
bedroom). It is possible that preexisting knowledge of scene 
categories, such as bedrooms and beaches, helps support high-
fidelity long-term memory for any particular scene exemplar.

According to this account, a first glance at a scene gives the 
observer a statistical summary representation of the global 
image structure and its basic-level category (Greene & Oliva, 
2009a; Oliva, 2005). This category knowledge helps guide 
attention to details that are the most relevant for distinguishing 
this scene from other scenes. Shifting attention to different 
aspects of the scene over time allows for the accumulation  
of visual details (Brady, Konkle, Oliva, & Alvarez, 2009;  
Hollingworth, 2004, 2008; Melcher, 2006). Thus, given suffi-
cient preexisting knowledge and time, diagnostic visual details 
are accumulated and stored in long-term memory (Brady  
et al., 2008; Brady, Konkle, Oliva, & Alvarez, 2009; Vogt & 
Magnussen, 2007).

Relationship between scene  
and object categories
We found that the impact of scene exemplars on memory perfor-
mance and the impact of object exemplars on memory perfor-
mance were of a similar magnitude. How should we account for 
this, given the obvious differences between real-world scenes 
and isolated individual objects? In both the object and the scene 
experiments, we sampled exemplars that spanned the breadth of 
their category. However, this sampling procedure does not by 
itself predict that the interference of object exemplars and scene 
exemplars should be the same. To make this prediction, we also 
have to assume that the infrastructure of long-term memory is 
such that any two object exemplars and any two scene exemplars 
are, on average, equally likely to interfere with each other. Thus, 
these results potentially make a strong statement about the gen-
eral structure of visual categories—namely, that the richness of 
scene categories is similar to the richness of object categories. 
This proposal fits with the notion that basic-level categories are 
situated at an information-theoretic optimum, maximizing 
within-category similarity and minimizing between-category 
similarity (Corter & Gluck, 1992; Rosch, 1978).

Conclusion
Beyond the capacity and fidelity of long-term memory, our 
results speak to a fundamental principle of the representation 
of visual events. Scene and object representations have largely 
been considered separate visual entities: Scenes are often 
thought to be a superset of objects. However, the data not only 
from the current study but also from studies as diverse as those 
involving recognition at a glance (i.e., Greene & Oliva, 2009a; 
Potter, 1976; Thorpe, Fize, & Marlot, 1996) and categorical 
statistical learning (Brady & Oliva, 2008) suggest a strong 



1556		  Konkle et al. 

alternative: Scene and object categories may be best treated as 
entities at a similar level of conceptual abstraction, providing 
the semantic structure necessary to support recognition and 
memory of visual details.
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